Science

植物&动物 | 生态&环境 | 大脑&行为 | 健康 | 技术 | 科学&政策 | 进化 | 古生物学 | 细胞 | 分子 | 基因&蛋白 | 遗传&发育 | 生物化学 | 生物物理 | 免疫 | 人物&事件 | 微生物学 |
当前位置: Science » 大脑&行为 » Science:人工智能可预测美国会行为

Science:人工智能可预测美国会行为

摘要 : 迂回曲折地走入美国参议院的健康草案只是美国国会今年将会考虑的数千份草案中的一份,其中绝大多数将会失败。实际上,仅有约4%的草案会成为法律。

迂回曲折地走入美国参议院的健康草案只是美国国会今年将会考虑的数千份草案中的一份,其中绝大多数将会失败。实际上,仅有约4%的草案会成为法律。那么,哪些法案值得关注呢?一个新人工智能(AI)算式将会提供帮助。仅需一份草案加上约12个其他变量,它就能以极高准确性判断一项草案成为法律的几率。

其他的算式曾预测过一份草案能否在国会委员会上生存下来,或者参议院或众议院代表是否会投票支持它,它们均有一定程度的成功率。聚焦研究政策制定的纳什维尔AI公司Skopos实验室计算学家John Nay希望让该预测向前再迈一步。他希望预测一份法案能否在两院获得通过,并精确地预测其通过几率。

Nay从一个名为GovTrack的法律跟踪网站下载并分析了从第103届国会(1993—1995年)到第113届国会(2013—2015年)的相关数据。其中包括草案的全文以及一系列变量,如共同赞助者的数量、法案被引入时的月份以及支持者是否在其所属两院占多数群体等。他利用从103届到106届国会的数据训练了机器学习算式,从而将草案的内容和背景变量及其结果进行连系。随后,他预测了在第107届国会中的每项草案结果如何。接下来,他对从第103届到第107届国会的算式进行了训练,以预测第108届国会等等,以此类推。

Nay最复杂的机器算式结合了若干个部分。第一部分分析了草案中的语言。它通过解释词汇如何镶嵌在周围的词汇中解释了它们的意思。接下来,它寻找了句意和包含它们的法案获得成功之间的连系。其他的三个算式发现了上下文数据和草案成功之间连系。最终,一个总的算式会利用其他四个算式的结果预测将会发生什么。

由于96%的草案会失败,简单的“经常失败”策略通常是正确的。但Nay并不是要简单地预测每个草案是否能够通过,而是想要归纳每个草案具体通过的可能性。如果一个草案价值1000亿美元,或是要花费数月或数年才能被凝聚在一起,不能因为其通过几率低于50%就忽视其实施的可能性。为此,他根据算式给出的成功比例而非预测草案会成功的数量对其评分。通过这种方式,他的算式比简单地猜测一个草案是否会通过的几率高65%

原文链接:

Artificial intelligence can predict which congressional bills will pass

原文摘要:

The health care bill winding its way through the U.S. Senate is just one of thousands of pieces of legislation Congress will consider this year, most doomed to failure. Indeed, only about 4% of these bills become law. So which ones are worth paying attention to? A new artificial intelligence (AI) algorithm could help. Using just the text of a bill plus about a dozen other variables, it can determine the chance that a bill will become law with great precision.

来源: Science 浏览次数:0

我们欢迎生命科学领域研究成果、行业信息、翻译原创、实验技术、采访约稿。-->投稿

RSS订阅 | 生物帮 | 粤ICP备11050685号-3 ©2011-2014 生物帮 Science  All rights reserved.