Science

植物&动物 | 生态&环境 | 大脑&行为 | 健康 | 技术 | 科学&政策 | 进化 | 古生物学 | 细胞 | 分子 | 基因&蛋白 | 遗传&发育 | 生物化学 | 生物物理 | 免疫 | 人物&事件 | 微生物学 |
当前位置: Science » 微生物学 » Science:美学者揭示细菌菌群的资源分时共享

Science:美学者揭示细菌菌群的资源分时共享

摘要 : 2017年4月6日,国际顶尖学术期刊《Science》杂志上在线发表了加州大学圣地亚哥分校生物科学系博士后研究员刘锦涛的一篇研究论文,论文报道了毗邻的菌群间不仅能相互沟通,还能协调各自的活动实现对有限资源的分时共享。

2017年4月6日,国际顶尖学术期刊《Science》杂志上在线发表了加州大学圣地亚哥分校生物科学系博士后研究员刘锦涛的一篇研究论文,论文报道了毗邻的菌群间不仅能相互沟通,还能协调各自的活动实现对有限资源的分时共享。

菌群内的细菌可通过发送电信号进行沟通,但此前并不清楚这种沟通方式是否还能扩展至远处的菌群。研究组在一个微流控腔室中设立了两个相距2毫米的枯草杆菌生物膜菌群,结果发现,两个菌群不但能相互沟通,还会同步性生长。这提高了菌群对外界的抵抗力,但也导致了菌群间对有限资源的竞争。当“食材”谷氨酸浓度降低时,两个菌群生长不再同步,而是切换成分时共享模式,从而降低了对资源竞争,这反而使得菌群在低谷氨酸浓度中生长速率更快。

“假定谷氨酸浓度为1,同步生长时,每个菌群分得的营养是0.5;谷氨酸浓度降低为0.7,但菌群采用分时共享模式异步生长,每个菌群得到的营养依然是0.7,菌群生长速率自然就更快了。”他解释说。

研究人员还发现,在两个菌群间的信号沟通受到阻碍时,细菌会发生突变,突变后的细菌需要有更高浓度的谷氨酸才能实现同步化生长。同样的,那些竞争性较差的突变菌株也需要有更高的谷氨酸浓度才能实现在对照菌群中所见的同步化生长。

刘锦涛称,对有限资源的合理分配是非常普遍的问题。这些结果揭示了菌群间是如何进行沟通与合作来促使其生长的,有望应用在生物和医学领域,以更好地控制细胞群体。

原文链接:

Coupling between distant biofilms and emergence of nutrient time-sharing

来源: Science 浏览次数:0

我们欢迎生命科学领域研究成果、行业信息、翻译原创、实验技术、采访约稿。-->投稿

RSS订阅 | 生物帮 | 粤ICP备11050685号-3 ©2011-2014 生物帮 Science  All rights reserved.